Volcano-Tectonic Deformation at Taal Volcano, Philippines Abstract


  • Taal Volcano, located in southern Luzon, Philippines, is an unusual, tholeiitic volcano situated within a calc-alkaline arc. It is one of the most active volcanic centers in the Philippines, with some 33 historic volcanic eruptions over the past four centuries. Volcanism at Taal is at least partly tectonically controlled, suggested by its location at the intersection of regional fault structures and by the location and shape of both Taal's caldera and Volcano Island. The alignment of modern eruption centers, are controlled by regional and local structures. Here, we review geomorphic and geodetic observations that constrain both tectonic and volcanic deformation in the vicinity of Taal volcano. We use GPS measurements from a 52-station GPS network measured from 1996 - 2001 to investigate overall plate interaction and microplate (intra-arc) deformation. The velocity field indicates that the majority of the Philippine Sea - Eurasia plate convergence is taking place west of Luzon, presumably largely by subduction at the Manila trench. A relatively small fraction of the convergence appears to be taking place within Luzon or across the East Luzon trough. The major intra-arc deformation is accommodated by strike-slip motion along the Philippine Fault, ranging from 25-40 mm/yr left-lateral slip. Detailed measurements in southern Luzon also indicate significant intra-arc deformation west of the Philippine Fault. GPS measurements in southwestern Luzon indicate significant motion within the arc, which could be explained by 11-13 mm/yr of left-lateral shear along the "Macolod Corridor", within which Taal Volcano resides. A dense network of continuous single- and dual-frequency GPS receivers at Taal Volcano, Philippines reveals highly time-variable deformation behavior, similar to that observed at other large calderas. While the caldera has been relatively quiescent for the past 2-3 years, previous deformation includes two major phases of intra-caldera deformation, including two phases of inflation and deflation in 1998-2000. The February-November 2000 period of inflation was characterized by approximately 120 mm of uplift of the center of Volcano Island relative to the northern caldera rim, at average rates up to 216 mm/yr. The source of deflation in 1999 was modeled as a contractional Mogi point source centered at 4.2 km depth beneath Volcano Island; the source of inflation in 2000 was modeled as a dilatational Mogi point source centered at 5.2 km depth beneath Volcano Island. The locations of the two sources are indistinguishable within the 95% confidence estimates. Modeling using a running four-month time window from June 1999-March 2001 reveals little evidence for source migration. We find marginal evidence for an elongate source whose long axis is oriented NW-SE, paralleling the caldera-controlling fault system. We suggest that the two periods of inflation observed at Taal represent episodic intrusions of magma into a shallow reservoir centered beneath Volcano Island whose position is controlled at least in part by regional tectonic structures.

publication date

  • 2004

presented at event